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Abstract

We explore how learning to play strategically in one signaling game promotes strategic play in a related
signaling game.  Following convergence to a pooling equilibrium, payoffs are changed to only support
separating equilibria.  More strategic play is observed following the change in payoffs than for
inexperienced subjects in control sessions, contrary to the prediction of a fictitious play learning model. 
Introducing a growing proportion of sophisticated learners, subjects who anticipate responders’ behavior
following the change in payoffs, enables the model to capture the positive cross-game learning observed
in the data.   
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1See Camerer (2003) for a recent review of the existing literature and citations to same.
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Numerous experiments show that models of learning in which players have bounded rationality

and only gradually learn how to best respond in a game capture important features in experimental data

missed by standard equilibrium approaches based on full rationality of players.1   Over time subjects

generally learn to make decisions that are more consistent with rationality, implying that the stability

properties of learning models can serve as a viable foundation for equilibrium analysis.  However,

virtually all papers on learning employ an environment in which learning takes place within a stationary

environment while in many real world settings the game being played changes over time.  Stability

properties derived in stable environments may be irrelevant if changes in the game disrupt the learning

process.  The ability to take what has been learned in one game and apply it in another related game is

therefore an integral but largely unexplored aspect of learning in games.

The extensive psychology literature on transfer indicates that the ability to generalize across

games cannot be taken for granted.  Positive transfer usually fails except in settings that are perceived as

being quite similar.  This failure follows in part from subjects’ inability to recognize underlying concepts

that allow them to generalize between settings (Gick and Holyoak, 1980; Perkins and Salomon, 1988;

Salomon and Perkins, 1989).  While suggestive, the direct relevance of these findings for economic

games is questionable.  Psychology studies of learning transfer tend to be one-shot in nature, both in

terms of what was initially learned and in terms of the new learning environment. In contrast cross game

learning issues in economics are largely concerned with whether having adjusted over time to equilibrium

in one game will speed up the adjustment over time to a new equilibrium in a related game.  Additionally,

the insights gained in many psychology studies are algorithmic in nature (e.g. what is the best method of

solving a logic problem), while successful play in many games revolves around psychological insights

(e.g. is my opponent trying to fool me). This mismatch between studies of learning transfer in psychology

and game theoretic settings underlines the need to study cross game learning.    

The goals of our experiment are to determine whether or not positive transfer occurs between



2For other studies of learning transfer in game theoretic settings see Kagel and Levin (1986) and Ho, Camerer, and
Weigelt (1998).  The contribution of our work lies not in being the first to consider learning transfer in games but
rather in our exploration of the mechanism underlying this transfer.

Page 2

related games and, more importantly, to identify the mechanism by which transfer occurs.2  We study

these issues in the context of a well-known signaling game from the industrial organization literature,

Milgrom and Roberts’ (1982) entry limit pricing game.  Strategic play in this game revolves around an

incumbent monopolist attempting to deter entry by signaling it will be a tough competitor for a potential

entrant.  Past experiments have found that strategic play only emerges gradually, with most monopolists

initially ignoring the strategic implications of their choices on entrants’ responses (Cooper, Garvin and

Kagel, 1997a and 1997b).

   The limit pricing game provides a rich environment for studying transfer.  Like most signaling

games, it features multiple equilibria including pure strategy pooling and separating equilibria.  This

multiplicity allows us to confront subjects with related games that require quite different actions to play

strategically.  Further, strategic play is clearly identifiable in the limit pricing game, making it easy to

measure the extent to which there is cross-game learning.  While our results are derived within the

framework of a single game, the insights generated are likely to apply broadly as the main concepts

needed to play strategically in the limit pricing game (e.g., think from the other player’s point of view,

anticipate that others will attempt to glean information from your actions) are also valid in many other

games.

We confront subjects with a challenging test of their ability to transfer learning between games. 

In the initial game, entrants’ payoffs support a pure strategy pooling equilibrium to which inexperienced

subjects’ play reliably converges.  In this equilibrium high cost monopolists act strategically, imitating the

low cost monopolists.  Entrants’ payoffs are then changed to eliminate the pooling equilibrium, leaving

only pure strategy separating equilibria.  While conceptually similar, strategic behavior in the second

game requires substantially different actions than in the first game, as it is now the low cost monopolists

who must act strategically, distinguishing themselves from high cost monopolists.  



3The fictitious play model of learning was introduced by Robinson (1951).  The version we employ is closely related
to the stochastic fictitious play model of Fudenberg and Levine (1995). 

Page 3

Ex ante, neither the psychology literature or the economics literature on learning lead us to expect

much cross-game learning following the change in entrants’ payoffs.  For positive transfer to occur, it is

not sufficient that subjects have learned how to play strategically in the initial game.  Subjects must also

understand why strategic play works in the first game and recognize that similar concepts apply in the

second game.  It is precisely this ability to use underlying concepts (as opposed to merely continuing use

of a previously successful strategy without understanding the reasons for its success) that the psychology

literature identifies as a sticking point for positive transfer.  

This point can be made formally using a fictitious play learning model that has worked well in

tracking play from previous signaling game experiments (Cooper et al, 1997b).3  It predicts that strategic

play by low cost monopolists immediately following the change in entrants’ payoffs will be less frequent

than in control sessions (negative transfer), and will remain less than in the controls until behavior

converges to an equilibrium outcome.  This prediction is based on the unsophisticated learning process

underlying fictitious play, a feature it shares with other commonly used learning models such as replicator

dynamics (see Fudenberg and Levine, 1998, ch. 3), reinforcement learning (Roth and Erev, 1995), and

EWA (Camerer and Ho, 1999).  A fictitious play learner treats his opponents as a fixed statistical

distribution rather than forming a model of how his opponents make decisions. Because of this, a

fictitious play learner does not anticipate any change in his opponents’ play when their payoffs are

altered.  Lacking any concept of why strategic play works in the initial game, fictitious play learners (as

well as other types of unsophisticated learners) are poorly equipped to continue playing strategically

when the environment changes.  

Contrary to the preceding, in our data low cost monopolists show significantly more strategic

play immediately following the change in entrants’ payoffs than in control sessions (positive transfer).  In

fact, the play of subjects following the crossover is statistically indistinguishable from experienced

subjects in control sessions, suggesting that experience with the pooling equilibrium is an almost perfect
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substitute for experience in the game where the only pure strategy equilibria are separating. 

To capture the rapid jump to strategic play observed in the data, we modify the basic fictitious

play model to include the possibility that subjects learn in a sophisticated manner, modeling how their

opponents make decisions and thereby anticipating the change in responders’ behavior following the

change in their payoffs.  We also allow for the possibility that subjects can change modes of learning,

switching from unsophisticated to sophisticated learning.  Fitting this model to the data, we find a

statistically significant fraction of sophisticated learners in the population.  Moreover, a significant

fraction of subjects switch from unsophisticated to sophisticated learning with experience.  With the

addition of a growing number of sophisticated learners, the model tracks the jump in strategic play

following the change in entrants’ payoffs. 

Because the mechanism by which transfer occurs, sophisticated learning, is relevant for many

games, our results are like to extend beyond the specific environment being studied.   More broadly it is

clear that many subjects are not the simple-minded automata envisioned by standard learning models. 

This is good news for game theory, a central idea of which is that agents will try to anticipate the actions

of others and respond accordingly.  Our results indicate that good models of learning should allow for the

development of substantial sophistication on the part of subjects over time. 

II) The Limit Pricing Game:  The games studied here are based on Milgrom and Roberts' (1982) entry

limit pricing model.  For our purposes, the industrial organization implications of this model are of

secondary importance.  We therefore employ a stylized version of the model that focuses on the signaling

aspects of the game. This section describes the two versions of the game used in our experiments and

derives equilibrium predictions for these games. 

A. The Game: The limit pricing game is played between an incumbent monopolist (M) and a potential

entrant (E).  The game proceeds as follows: (1) M observes its type, high cost (MH) or low cost (ML).  

The two types are realized with equal probability with this being common knowledge. (2) M chooses one

of seven output levels (quantities).  M's payoff, shown in Table 1a, is contingent on its type, the output

level chosen, and the E's response. (3) E sees M's output, but not M's type, and either enters or stays out. 



4All of the equilibria to be described are sequential (Kreps and Wilson, 1982).
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This asymmetric information, in conjunction with the fact that it is profitable to enter against MHs, but

not against MLs, provides an incentive for strategic play  (limit pricing) by Ms.   E's payoff depends on

M's type and on E's decision, not on M's output choice.  As a treatment variable, two different payoff

tables, Tables 1b and 1c, were used for Es.  These represent "high cost" and "low cost" Es respectively. 

Only one of these tables was in use at any given time.  

Three features of Table 1a capture the main strategic elements confronting Ms:  (1) Ceteris

paribus, Ms are better off if Es choose OUT rather than IN.  (2) Reflecting lower marginal costs, MLs

generally prefer higher output than MHs.  This can be seen in Ms’ payoffs should they ignore the effect of

their choices on Es’ behavior -- MLs would choose output 4 as opposed to 2 for MHs.  These choices will

be referred to as the Ms’ “myopic maxima.”  (3) Output levels 6 and 7 are dominated strategies for MHs,

but not MLs.  At these outputs MLs can, in theory, perfectly distinguish themselves from MHs.

For either high or low cost entrants (Table 1b or 1c) it pays to play IN when M is known to be an

MH type and to play OUT against an ML type.  However, given the 50-50 probability of the different M

types, the expected value of OUT is greater than IN for high cost entrants (250 vs. 187) and the expected

value of IN is greater than OUT for low cost entrants (350 vs. 250).  

B.  Equilibrium Predictions: For the limit pricing game with high cost Es (Tables 1a and 1b), there exist

multiple pure strategy pooling, as well as separating, equilibria.4  Pure strategy pooling equilibria occur at

output levels 1-5.  For example, consider a pooling equilibrium at output 3. Given the prior probabilities

over M’s type, E’s expected value of OUT is greater than IN so that pooling deters entry.  Beliefs that

support this equilibrium are that any deviation involves an MH type with sufficiently high probability to

induce entry.  Given these beliefs, both MHs and MLs achieve higher profits at 3 rather than deviating to

their myopic maxima.  Similar out of equilibrium beliefs support the other pooling equilibria.  Pooling

equilibria at outputs 3-5 involves strategic play by MHs as they choose higher output levels than would

be optimal if they ignored the impact of their choice on E’s response.



5A copy of the instructions is available at www.weatherhead.cwru.edu/djcooper .
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Two pure strategy separating equilibria also exist. In both of these MHs choose output level 2 and

are always entered on; MLs either always choose output level 6 or 7 and never incur entry.  With MLs

choosing 6 or 7, MHs cannot profitably imitate them as 2 dominates 6 and 7 for MHs.  Once again beliefs

supporting these equilibria are that deviations to outputs used with zero probability in equilibrium involve

an MH  type with sufficiently high probability to induce entry.  This deters MLs from choosing lower

output levels.  These separating equilibria involve strategic play (limit pricing) by MLs since output

levels 6 and 7 are higher than would be ideal if the effect on E’s response is ignored.

For the limit pricing game with low cost Es (Tables 1a and 1c) the expected value of IN is greater

than OUT if both types choose the same output level. This destroys any pure strategy pooling

equilibrium, leaving the two pure strategy separating equilibria just described. Also playing a role in the

experimental data is a mixed strategy equilibrium where MHs choose 2 with probability .80 and 5 with

probability .20 and MLs always choose 5.  This too involves strategic play by MLs as they choose a

higher output level than would be optimal ignoring E’s response.

III)  Experimental Procedures and Design: We begin this section by describing the general procedures

used in all sessions and then lay out the specifics of the experimental design. 

General Procedures:  Experimental sessions employed between 12 and 16 subjects who were randomly

assigned to computer terminals.  All sessions included an even number of subjects so all individuals could

play in every round.  For inexperienced subject sessions, a common set of instructions were read out loud,

with each subject having a written copy.  Subjects had copies of both Ms’ and Es’ payoff tables and were

required to fill out short questionnaires to insure their ability to read them.  After reading the instructions,

questions were answered out loud and play began with a single practice round followed by more

questions.  At the beginning of experienced subject sessions, an abbreviated version of the full

instructions was read out loud with each subject having a written copy.5

Before each play of the game the computer randomly determined each M’s type and displayed



6One session had only 24 games since it was conducted in an undergraduate economics class during class time,
which limited the number of games.  Subjects from this session were slightly more likely than other experienced
subjects in the control sessions to play strategically as MLs (76% vs. 61%). 

7These sessions also tended to be shorter since only an abbreviated version of the instructions were read and subjects
were familiar with the game.
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this information on Ms' screens.  Ms chose first, with each M's choice sent to the E they were paired with

for that game.  Es then decided between IN and OUT.  Following each play of the game subjects learned

their payoffs and Es were told the type of M they were paired with. In addition, the lower left-hand

portion of each subject’s screen displayed the results for each pairing: M’s type, M’s action, and E’s

response.  Thus, subjects had a full history of Ms’ actions conditioned on their type and Es’ responses

conditioned on Ms’ actions.  Subject ID numbers were suppressed throughout to preserve anonymity.  

To speed learning, subjects switched roles after every 6 games, with Ms becoming Es and vice

versa.  We refer to a block of 12 games with each subject playing each role for 6 games as a "cycle." 

Within each set of 6 games, each M was paired with a different E for every play of the game. 

All but one inexperienced subject session had 36 games, with the number of games announced in

advance.6  Experienced subject sessions had a minimum of 36 games, with all but two of the control

sessions having 48 games.  All of the cross over sessions use experienced subjects.  

When a crossover took place all subjects were given written copies of the new payoff tables.  A

brief set of instructions were read out loud indicating that the basic structure of the game was the same as

before but that payoffs had changed. The number of additional games to be played was also announced.

Subjects were recruited through announcements in undergraduate classes, posters placed

throughout the University of Pittsburgh and Carnegie Mellon University, and advertisements in campus

newspapers.  This resulted in recruiting a broad cross section of undergraduate and graduate students from

both campuses.  Sessions lasted a little under two hours.  Subjects were paid $5 for showing up on time.

Earnings averaged $17.50 per subject in inexperienced subject sessions.  Earnings were generally higher

in experienced subject sessions, largely as a result of playing more games.7  

At the end of the inexperienced sessions, subjects were asked if they were interested in returning



8The context controls allow us to identify that there is positive transfer in Experiment 2 even if the crossover
sessions are directly compared only to the control sessions employing meaningful context.  Cooper and Kagel (2006)
studies the interaction between using meaningful context and the crossover effect.
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for a second session.  Experienced subject sessions generally took place about a week after the

inexperienced subject sessions.  Subjects from different inexperienced subject sessions were mixed in the

experienced subject sessions. 

Control sessions were conducted using both a “generic” context and a “meaningful” context.  The

generic context uses abstract terms throughout.  For example, monopolists are referred to as “A players,”

with the two types being “A1 types” and “A2 types” respectively, and potential entrants are described as

“B players.”  Other terms are given similarly meaningless labels.  The meaningful context uses natural

terms while avoiding any value laden language.  Thus, the monopolist is referred to as the “existing firm,”

with the two types being “high cost firms” and “low cost firms” respectively, and the potential entrant

becomes the “other firm” deciding between entering “this” market or some “other” market.  No subject

was ever switched between generic context and meaningful context or vice versa.  All crossover sessions

used meaningful context.  In an earlier paper we find that meaningful context speeds up learning for

inexperienced subjects (Cooper and Kagel, 2003a), but does not affect the play of experienced subjects.

We control for any potential context effects in the statistical analysis.8

Experimental Design:   Our experimental design compares the development of strategic play by MLs

between “crossover” sessions where Es’ payoffs switch from Table 1b (high cost Es) to Table 1c (low

cost Es) versus control sessions where Es use Table 1c (low cost Es) throughout.  

There were three crossover sessions with a total of 38 subjects.  All of these subjects had

participated in at least one full session of the limit pricing game with high cost Es.  One prediction of the

fictitious play model (without sophisticated learners) developed in Section VI is that the frequency of

strategic play by MLs following the crossover is a decreasing function of experience in the game with

high cost Es.  To test this prediction, the crossover to the game with low cost Es occurred at different

times.  In one session subjects were crossed in the 13th game after returning as experienced subjects.  In a



9One subject was once-experienced in this crossover session.  She was needed to make an even number of players. 

10There are no choices of 6 in this cycle, so we cannot calculate the entry rate differential between 4 and 6. 
However, it cannot be greater than the 7.6% entry rate for 4.
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second session, all subjects played in a full experienced subject session with high cost Es before playing

in a third session in which they were crossed to the low cost E game in the 13th game.9  In the third session

half the subjects had played one prior session with high cost Es and half had played two prior sessions

with high cost Es.  This session was crossed to low cost Es in the 25th game.  

There were 5 experienced subject control sessions with a total of 66 subjects.  Only subjects who

returned for an experienced subject control session are included in the data set for inexperienced subject

controls sessions (to avoid comparing subjects who returned with those who did not).

Past experiments with the limit pricing game with high cost Es find that play reliably converges

to the pooling equilibrium at output 4 (Cooper, Garvin, and Kagel, 1997b).  Strategic play in this game

involves MHs imitating MLs by choosing output levels 3, 4, or 5.  Introducing low cost Es (Tables 1a and

1c) eliminates all pooling equilibria. Strategic play now requires MLs to choose output levels 5, 6, or 7,

distinguishing themselves from MHs.  While the actions used to play strategically are changed following

the crossover, the concepts underlying strategic play in the game with high cost Es remain relevant.  To

play strategically in either game, Ms must realize that the Es will be trying to infer their types from their

output choices and that by choosing a relatively high output they can make themselves seem more like a

low cost type.  

V) Results: Our experimental design relies on the emergence of a pooling equilibrium in the limit pricing

game with high cost Es prior to the crossover.  In the last twelve period cycle before Es’ payoffs changed,

60.2% of play by MHs is at 4, and 67.3% involves strategic play of some sort (choice of 3, 4, or 5).  For

MLs, 89.6% of play is at 4 and there are almost no choices at higher output levels (5.2%). These choices

are supported by strong incentives to limit price as an MH but not as an ML, as the entry rate differential

between 2 and 4 had risen to 72.4%, while the entry rate on 4 had fallen to 7.6% at most.  In both cases a

13% entry rate differential is needed to support strategic play.10 
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The left and center panels of Figure 1 illustrate the development of strategic play by MLs in the

control sessions.  The left panels show the distribution of choices for inexperienced subjects in the control

sessions.  Initially, MLs overwhelmingly choose the myopic maximum, output level 4.  Not only is there

little strategic play by MLs, it is difficult to eliminate pure errors as a cause of this strategic play since

MLs’ choice of output levels below 4 are more frequent than strategic play in the first cycle of play. 

Comparing the first and second cycles of play in the inexperienced control sessions, strategic play by

MLs increases but at a slow pace.  Choice of output level 4 remains the modal choice for MLs by a wide

margin and choice of output levels below 4 continues to be almost as common as strategic play.  This

failure of MLs to play strategically cannot be attributed to a lack of incentives, as the expected payoffs for

output levels 5 and 6 are both higher for MLs than the expected payoff from output level 4 (MLs’

expected payoffs are 520, 541, and 592 for output levels 4, 5, and 6 respectively).  The middle panels of

Figure 1 show the distribution of choices in the first two cycles of the experienced control sessions. 

Strategic play by MLs continues its slow growth, fueled by increasing incentives to behave strategically. 

Only in the second cycle does output level 4 cease to be the modal choice of MLs.  To summarize: 

Conclusion 1: Play in control sessions starts with Ms largely choosing their respective myopic maxima,
with strategic play by MLs (play of output levels 5 - 7) developing only gradually.

The right panels of Figure 1 show the distribution of choices in the first two cycles following the

crossover.  In the first cycle of play following the crossover, output level 4 remains the modal choice for

MLs.  However, strategic play by MLs is three times more frequent than in the first cycle of

inexperienced subject play for the control group (25.7% versus 8.5%).  Indeed, inexperienced subjects in

the control group never achieve the level of strategic play observed for MLs in the first cycle following

the crossover.  It is only in the first cycle of experienced subject play for the control group that we see

more strategic play by MLs (40%) than immediately following the crossover. 

Figure 2 provides a more detailed view of the crossover effect for MLs.  The unit of time on the

x-axis is how many times a subject has played as an ML.  On average, each subject will have three such

plays in a twelve period cycle.  In control sessions, time is measured from the beginning of the session. 



11It doesn’t matter much how long subjects wait before their first opportunity to play strategically as an ML.  A
simple way to see this is to compare the behavior of subjects who are initially Ms following the crossover with those
who are initially Es – the latter uniformly wait longer to play as MLs.  The percentage of strategic play is identical
across these two groups in their first opportunity as an ML.

12Additionally, see Cooper and Kagel (2006) for a replication of the positive crossover effect using only meaningful
context for control and crossover sessions.
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For example, “Play 1” is the first time an inexperienced subject played as an ML.  In crossover sessions

time is measured from the point of the crossover.  In this case “Play 1” is the first time a subject played as

an ML following the crossover.  The graph plots the percentage of strategic play by MLs in inexperienced

control sessions, experienced control sessions, and crossover sessions.  Looking at “Play 1,” MLs in the

crossover treatment immediately limit price more often than their counterparts in the inexperienced

control sessions.11  This suggests that MLs anticipate a change in Es’ behavior following the crossover.

The evolution of play by MLs in the crossover treatment closely parallels that of the experienced control

group, diverging steadily from the inexperienced control group.  These results can be summarized as

follows:

Conclusion 2: MLs in the crossover treatment look more like experienced than inexperienced subjects in
the control sessions.  Experience in a game with high cost Es appears to be a good
substitute for experience in a game with low cost Es.

A confounding factor here is the greater incentives for MLs to limit price following the crossover

than in the control sessions.  However, as the formal statistical analysis in the appendix shows, MLs’

higher frequency of strategic play following the crossover remains statistically significant after

controlling for entry rate differences.  The statistical analysis also addresses another potential confound,

the use of both generic and meaningful context in the control sessions.  The positive crossover effect is

still significant with the addition of context controls.12

The formal statistical analysis addresses several other questions.  First, it shows that the timing of

the crossover does not have a significant effect on the frequency of strategic play following the crossover. 

This is evidence against fictitious play learning, absent sophisticated learners.  Second, having been

paired with an ML who played strategically prior to the crossover has no significant effect on the
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frequency of strategic play following the crossover.  This rules out imitation as explaining the jump in

strategic play following the crossover.  However, playing strategically prior to the crossover as either an

ML or an MH is positively and significantly correlated with strategic play as an ML following the

crossover.  Although this result in part reflects individual effects in the data, it also draws on deeper

aspects of subjects’ learning processes.  The structural model of learning developed in Section VI

indicates that rapid development of strategic play following the crossover is closely tied to the presence of

“sophisticated learners” in the population.  Sophisticated learners are more likely to play strategically for

the game with high cost Es and the game with low cost Es, thereby helping to generate positive

correlation between individual subject’s strategic play before and after the crossover. 

VI.  A Structural Model of Learning and Sophistication:  The positive cross-game learning reported

above is inconsistent with the predictions of the stochastic fictitious play learning model that motivated

the experiment.  This model predicts negative cross-game learning because Ms fail to anticipate the

change in Es’ behavior following the crossover and therefore respond incorrectly.  In contrast, the

experimental results suggest that at least some subjects are sophisticated enough to anticipate the change

in Es’ behavior and correctly respond to it.

To explore this intuition more formally, this section develops a stochastic fictitious play learning

model, adds sophisticated learners, and fits both models to the data. This analysis has two purposes.  First,

we want to show that the addition of sophisticated learners improves the econometric fit to the data. 

Second, and more importantly, we want to show that the addition of sophisticated learners enables the

learning model to track the main features of MLs’ behavior following the crossover.

The basic learning model treats Ms as belief-based learners in the spirit of stochastic fictitious

play (Fudenberg and Levine, 1995).  We choose this model because similar models have done a good job

of tracking the development of play in earlier signaling game experiments (Cooper, Garvin, and Kagel,

1997a, b).  The model, although only described for Ms in our limit pricing game, generalizes in a straight

forward way to other games.

We have not explicitly considered other classes of learning models such as replicator dynamics



13In previous fitting exercises (Cooper and Stockman, 2002; Stahl, 2003), introducing autocorrelation into the model
significantly improved the fit. 
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(see Fudenberg and Levine, 1998, ch. 3), reinforcement learning (Roth and Erev, 1995), or EWA

(Camerer and Ho, 1999).  Determining the learning model that best tracks subjects’ behavior goes well

beyond the scope of the present paper.  It is unlikely that using these other models would overturn our

main conclusions since all of them, like fictitious play, embody unsophisticated learners who do not

explicitly model other players’ learning and decision making processes. 

A.  The Learning Model: A belief-based learning model requires rules for choosing a strategy in period t

given beliefs, updating beliefs from period t to period t+1, and generating initial beliefs.  Let Cij
t(IN) and

Cij
t(OUT) be weights that player i puts on the responses “IN” and “OUT” respectively in period t

following output j.  These variables can be thought of as modified counts for the number of times each

outcome has been observed.  Let bij
t(IN) and bij

t(OUT) be the probabilities that player i assigns to the

responses “IN” and “OUT” respectively in period t following output j.  These represent player i’s beliefs. 

Beliefs are generated from  Cij
0(IN) and Cij

0(OUT) using the following two equations:

(eq. 1a)b (IN)
C (IN)

C (IN) C (OUT)
ij
t ij

t

ij
t

ij
t=

+

(eq. 1b)t t
ij ijb (OUT)=1-b (IN)

Given bij
t(IN), bij

t(OUT), and player i’s type in period t, let πij
t be player i’s expected payoff from

choosing output j in period t.  With probability pchange, player i selects a new strategy in period t. 

Otherwise, he uses the same output as the last time he played as the same type.13  Player i’s probability of

choosing output j in period t (subject to choosing a new output), pij
t, is generated via a logit rule:

(eq. 2)p e

e
ij
t

ij
t

ik
t

k

=
∑
=

λπ

λπ

1

7

This rule has the usual interpretation.  The precision parameter λ is the level of noise in the system.  If λ =
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0, the result is pure noise with each strategy chosen with equal probability.  As λ ÿ 4, we get arbitrarily

close to best-response to beliefs.

Individuals learn by updating Cij
t(IN) and Cij

t(OUT) from period to period.  Some notation is

required before the updating rule can be written down.  Let δ be the discount rate for past experience. 

Define cij
t(IN) and cij

t(OUT) to be the number of times that player i chose output j in period t and

observed the responses “IN” or “OUT” respectively.  Define c-ij
t(IN) and c-ij

t(OUT) to be the number of

times that an M player other than player i chose output j in period t and observed the responses “IN” or

“OUT” respectively.  Finally, given that subjects see the results for all other pairings, let wOther be the

weight players put on the experience of other players relative to their own experiences. The updating rule

for Cij
t(IN) in periods with no crossover is given by equation 3, with the updating rule for Cij

t(OUT)

defined in an analogous manner.  Note that updating takes place even in periods where player i isn’t

playing as an M.

(eq. 3)C (IN)
C (IN)

1
c (IN) w c (IN)ij

t 1 ij
t

ij
t

Other ij
t+
−=

+
+ + ⋅

δ

For periods following a crossover, the updating rule accounts for the possibility that subjects will

“reset” their beliefs.  In other words, beliefs following the crossover are treated as a convex combination

of beliefs prior to the crossover and the beliefs of an inexperienced subject.  Suppose a crossover takes

place between period t and period t + 1.  Let ρ be the weight on resetting beliefs.  Player i’s beliefs are

first updated using (3).  The following additional transformation is then made, where Cij
t(IN) gives the

counts prior to the transformation and C'ijt(IN) gives the counts following the transformation.  An

analogous transformation is made for C'ijt(OUT).

(eq. 4)C IN C IN C INij
t

ij
t

ij' ( ) ( ) ( ) ( )= − +1 0ρ ρ



25We have explored a variety of other specifications for how beliefs might be transformed following the crossover. 
The qualitative results are unaffected by alternative specifications.
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Intuitively, (1 - ρ) gives the weight subjects put on experience from the previous related game.  If ρ = 1

there is no cross-game learning and if ρ = 0 the games are treated as being identical.25 

To generate initial values for Cij
0(IN) and Cij

0(OUT), we fit initial beliefs for each of the seven

strategies.  Since probabilities must add up to 1, this involves fitting seven parameters.  We then fit a

single variable, “Strength,” that determines the initial strength of beliefs for all seven strategies.  Cij
0(IN)

and Cij
0(OUT) are backed out of the fitted parameters.  Let bj

0(IN) be the initial belief that an E will enter

following output level j.  Then Cij
0(IN) = bj

0(IN)@Strength and Cij
0(OUT) = Strength - Cij

0(IN).

Having described the basic learning model, we now modify it to include two additional modes of

learning: non-learners and sophisticated learners.  Non-learners start with the same initial beliefs as

unsophisticated learners, make choices in exactly the same way as unsophisticated learners, but never

update their beliefs.  A sophisticated learner models Es as being unsophisticated learners who maximize

payoffs subject to their beliefs.  This implies that a sophisticated learner anticipates that changes in

payoffs will affect Es' choices, and that Es' behavior will change as they accumulate experience.

In choosing how to incorporate sophistication into the learning model, our goal is to use the

minimal level of sophistication necessary to track the data.  The type of sophistication we have added

represents a relatively modest change to the stochastic fictitious play model. This approach has a number

of antecedents in the literature, particularly Milgrom and Roberts (1991), Selten (1991), Nagel (1995),

Stahl (1996), and Camerer, Ho, and Chong (2002).  Its key role is to allow Ms to anticipate changes in

entry rates following the crossover.  Although subjects may in fact be operating at a higher level of

sophistication, learning very general concepts about signaling games, the data does not force us to this

conclusion.  The level of sophistication added to the model does not imply that subjects can generalize

what they have learned in the limit pricing game to a radically different signaling game any better than

inexperienced subjects.  For example, our sophisticated learners would not necessarily be able to perform

any better than inexperienced subjects in Brandts and Holt’s (1992) signaling game or in Miller and



26The model can be modified to allow for types who anticipate a mixture of other types or use a mixture of
sophisticated and unsophisticated learning.  While this would no doubt improve the model’s ability to fit the data, it
complicates the model while adding little to our understanding of the underlying cognitive processes.

27The fitting exercise does not assign specific types to the subjects.  Instead it generates the likelihood of a subject's
observed choices subject to being a certain type, and then generates the full likelihood by taking the weighted
average over types, where the weights are given by the ex ante probability of each type.  Allowing players to switch
types at more points in time generates a statistically significant improvement in the fit, reflecting the presumably
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Plott’s (1985) game as they have substantially different structures from the present game.  It remains an

open empirical question whether or not the higher levels of sophistication needed for such cross-game

learning exist in the population.

Going into the details, a sophisticated learner needs to build beliefs that best replicate the beliefs

an unsophisticated E might have.  These are not the sophisticated player’s beliefs, rather they are his best

estimate of an unsophisticated E’s beliefs.  He builds these beliefs in exactly the same manner that an

unsophisticated E would.  In estimating the beliefs of unsophisticated Es, updating is done in a manner

analogous to (3) and (4) above, but with one important difference – outcomes from other players are

weighted equally to a player’s own outcomes.  Intuitively, a sophisticated learner is building fictitious

beliefs for other players and therefore has no reason to overweight his own experience.  Given his best

estimate of the beliefs of Es, a sophisticated learner generates a probability of entry for each output level

using a logit rule analogous to (2).  The resulting probabilities give a sophisticated learner’s beliefs about

the behavior of Es.  Based on these beliefs, a sophisticated learner generates his own choice in exactly the

same manner as an unsophisticated learner.  Thus, a sophisticated learner uses a noisy best response to a

noisy best response to beliefs based on observed outcomes.26

The model allows players to switch modes of learning over the course of play.  To simplify

computations, the only time this switch is allowed is when players return as experienced subjects.  We

further simplify the model by only allowing players to move up a single level of sophistication.  Thus,

there are three “pure” types (non-learners, unsophisticated learners, and sophisticated learners) and two

“switching” types (non-learner to unsophisticated learner and unsophisticated to sophisticated learner). 

The ex ante probabilities of these five types are parameters that we fit from the data.27



continuous nature of switching in reality, but does not change the qualitative results.  Allowing types that switch up
more than one level of sophistication or types that switch to lower levels of sophistication does not generate a
statistically significant improvement in the fit.
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B.  Fitting the Model: The model was fit using data from all subjects (including the controls) who

returned for an experienced subject session.  All plays as an M in both roles are used.  Parameter

estimates are generated through standard maximum likelihood techniques, with probabilities bounded

between 0 and 1.  When the algorithm ran into the boundaries for parameters that represent probabilities,

they were set equal to the boundary values to allow for convergence.

We set the initial beliefs for subjects playing in games with high cost Es and those for subjects

playing in games with low cost Es equal, as a log likelihood ratio test fails to reject the null hypothesis of

identical initial beliefs (χ2 = 9.68, 7 d.f., p > .10).  To simplify computations, the following parameters are

set equal (where relevant) for all three behavioral types: the precision parameter (λ), the probability of

changing strategies (pchange), discounting of past experience (δ), and the reset parameter (ρ). In addition,

the initial beliefs sophisticated learners assign to unsophisticated Es are forced to be identical across low

outputs (1 and 2), intermediate outputs (3 and 4), and high outputs (5, 6, and 7).  Relaxing these

restrictions would strengthen our main conclusions, but makes the likelihood function substantially harder

to maximize.

The data set includes repeated observations from the same individuals which cannot be treated as

statistically independent.  The inclusion of “inertia” in the model through the variable pchange somewhat

controls for these individual effects.  The inertia variable adds correlation between observations from the

same individual, so that its effect is roughly analogous to what a random effect specification does in more

standard sorts of analysis.  To the extent that this does not account for all of the individual effects in the

data, we also apply the correction for clustering suggested by Moulton (1986) and White (1994) to the

standard errors. 

The results of the maximum likelihood estimation are reported in Table 2.  Standard errors

(corrected for clustering) are shown in parentheses.  The estimates of initial beliefs are suppressed since



28The estimate for the “reset” parameter (ρ) in Model 3 is small and not significant indicating that unsophisticated
learners' beliefs are almost unaffected by the crossover.  The estimate of “weight on others’ experience” is small and
statistically insignificant suggesting that unsophisticated learners’ beliefs are based primarily on their own
experience.  The probability of changing strategies is always significantly less than 1, implying autocorrelation.
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these are of little direct interest. Results from three versions of the model are reported.  Model 1 only

includes non-learners.  Model 2 includes non-learners and unsophisticated learners, with no switching

between non-learners and unsophisticated learners.  When a probability of switching is included in Model

2, the maximization algorithm sets it equal to zero (indicating that it can be deleted).  Model 2 is

equivalent to a standard model of stochastic fictitious play.  Model 3 is the full model with non-learners,

unsophisticated learners, and sophisticated learners, as well as switching between types.

Comparing Model 1 with Model 2, we see a large improvement in the log-likelihood (χ2 =

603.60, 5 d.f., p < .01).  Not surprisingly, given the strong dynamics in the data, the evidence in favor of

learning is overwhelming.  The improvement in the log-likelihood between Model 2 and Model 3 is also

large and significant at the 1% level (χ2 = 189.42, 6 d.f., p < .01).  Looking at the parameter estimates, the

proportion of sophisticated learners increases from 18.8% in the inexperienced sessions to 32.4% in the

experienced sessions, and the estimated proportion of non-learners falls from 25.4% in the inexperienced

sessions to 18.1% in the experienced sessions.  Even though the latter decrease is not statistically

significant, the population is clearly moving toward greater sophistication over time.28

Conclusion 3: The addition of “sophisticated” learners to the basic model of fictitious play generates a
statistically significant improvement in the fit to the data.

C.  Simulations: This subsection reports simulations showing that the learning model without

sophisticated learners misses important features of the data that the model with sophisticated learners

captures. Thus, the addition of sophisticated learners to the model is not just statistically significant, it is

economically significant as well. 

We simulate Ms’ learning using the parameters generated by the maximum likelihood estimation. 

The simulations are designed to closely mimic the experiment.  Since we are primarily interested in the 

strategic play of MLs, the responses of Es and MHs are generated randomly using the observed
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frequencies in the data.  Simulations were run for inexperienced subject sessions with 36 games and

experienced subject sessions with 48 games, with the crossovers taking place in game 13.  As in the

experiment, simulated subjects alternated between playing as Ms and Es, with half of the simulated

subjects as Ms for the first half of each twelve period cycle and the other half as Ms in the second half. 

One slight difference from the experiment is that we forced each simulated player to be an ML (MH)

exactly three times in each twelve period cycle.  For each model and each treatment, play was generated

for 10,000 simulated subjects for each of the five behavioral types (including the two switching types).

The fitted probabilities of each type were then used to generate aggregate behavior.

Figure 3 displays strategic play by MLs from the simulations in the same way that Figure 2 did

for the experimental data.  The unit of time on the x-axis is how many times a subject has played as an

ML.  The top panel reproduces the data from the experiment (Figure 2), the middle panel simulates play

without sophisticated learners, and the bottom panel simulates play with sophisticated learners.

Comparing the top and middle panels of Figure 3, the simulated subjects do not replicate the

immediate jump in strategic play by MLs that is observed in the data following the crossover.  Intuitively,

unsophisticated learners have no mechanism to quickly adjust their beliefs about Es' behavior following

the change in their payoffs.  The only way the model without sophisticated learners can even partially

replicate MLs’ rapid jump to strategic play following the crossover is by allowing for very fast learning

following the crossover.  (This is the reason we estimate higher values of the discount parameter δ and the

reset parameter ρ in the model without sophisticated learners than with sophisticated learners.)  These

simulations confirm that, even fitted to data from the crossover sessions, the learning model without

sophisticated learners cannot track the data.

In contrast, the simulations with sophisticated learners look similar to the experimental data:

simulated MLs immediately show more strategic play following the crossover than simulated

inexperienced subjects in the control treatment.  Subsequently, strategic play by simulated MLs in the

crossover treatment grows gradually, paralleling the growth of strategic play for experienced subjects in



29We reran the simulations of Model 3 not allowing for any growth in the proportion of sophisticated learners. 
Comparing the first play as an ML in the inexperienced control sessions with the first play as an ML following the
crossover, we see only a 2% increase in the frequency of strategic play.  This is far smaller than the 8% difference
observed in the actual data or the 12% difference in the simulations with switching between types.
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the control treatment. Thus, the addition of sophisticated learners not only improves the statistical fit to

the data, it allows us to track the major features of play following the crossover.

The presence of sophisticated learners who immediately anticipate the effect of changing Es'

payoffs is necessary but not sufficient to explain why there is significantly more strategic play by MLs

following the crossovers than in the inexperienced control sessions. Without the increase in sophisticated

learners following the crossover, we would see almost exactly the same level of strategic play as in the

inexperienced control sessions.29  In the learning model, experience with the game with high cost Es helps

generate more strategic play by MLs because the level of sophistication has grown over time in the

subject population as a result of playing a related game.  That is, the critical difference between the

crossover sessions and the inexperienced control sessions is that experience with the high cost entrant

game results in a higher percentage of sophisticated learners in the population.  Thus, the primary

mechanism underlying the surprising degree of positive transfer following the crossover is the growth in

sophistication in the subject population.

Conclusion 4: The learning model with sophisticated learners generates better tracking of MLs’
behavior in crossover sessions.  Growth over time in the proportion of sophisticated
learners provides a mechanism for the positive transfer observed in crossover sessions. 

VII) Summary and Conclusions: This paper studies cross game learning in signaling games. Study of

cross game learning is important since, as Fudenberg and Kreps (1988) note:

 ". . . it seems unreasonable to expect the exact same game to be repeated over and over; put
another way, if we could only justify the use of Nash analysis in such situations, we would not
have provided much reason to have faith in the widespread applications that are found in the
literature.  Faith can be greater if, as seems reasonable, players infer about how their opponents
will act in one situation from how opponents acted in other, similar situations." 

Our experiments provide evidence that subjects who have learned to play strategically in one game can

transfer much of this knowledge to related games even if the actions necessary to play strategically are

quite different.  More importantly, we have begun to understand the mechanism(s) underlying this
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transfer.  We find evidence that there exist sophisticated learners in the subject population and that the

proportion of sophisticated learners increases with experience.  This growth in sophistication plays a

central role in fostering transfer.  In other words, experience not only changes how subjects play games,

but also how they approach related games, generating increased sensitivity to the strategic implications of

their actions and the effects of changes in other player’s payoffs.  It is this increased sensitivity that

allows them to perform well compared to naive subjects when put into a new (but related) setting.

The dynamic mechanism underlying the learning transfer explains why the negative results in the

psychology literature aren’t replicated here.  The psychology literature focuses on one shot trials where

subjects learn specific skills (e.g. how to drive a truck) or how to solve certain classes of problems (e.g.

logic puzzles).  Games, by their nature, are interactive.  With experience, subjects gain the ability to think

about how other individuals are making decisions and incorporate this into their own decision making. 

Both the interactive element of games and the extended experience necessary to generate sophisticated

reasoning about games are missing from the individual choice problems studied by psychologists.

We attribute the positive transfer following the crossover to the existence of a growing population

of sophisticated learners, but our experimental design does not allow us to directly verify the existence

(and increasing frequency) of sophisticated learners since we have no direct observations of subjects’

cognitive processes.  In subsequent research in which two person teams play the roles of Ms and Es,

content analysis of communication between team members verifies (i) the existence of sophisticated

learners of the type modeled here and (ii) growing numbers of sophisticated learners as a result of

experience with related games (Cooper and Kagel, 2005). 

Finally, ongoing research shows that our use of meaningful context for the cross-over sessions

plays a role in the development of sophisticated reasoning and, by extension, the occurrence of positive

cross-game learning (Cooper and Kagel, 2006).  Using generic context, the same cross-over treatment

generates zero or even slightly negative cross-game learning.  This positive effect of meaningful context

on cross-game learning is not universal, as Cooper and Kagel (2006) also report an example where the

effect is negative.  In brief, these divergent results capture different aspects of the mechanism underlying
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positive cross-game learning.  The experiments above stress one channel for generating positive cross

game learning; in the initial game subjects acquire concepts underlying strategic play that are applicable

to the subsequent game.  Meaningful context helps in this process by fostering the development of

strategic empathy.  However, if the main barrier to cross-game learning is the ability to recognize that

experiences in the initial game are relevant for the new game, meaningful transfer may play a negative

role by obscuring the relationship between games.
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Table 1a:
Monopolist Payoffs

High Cost Monopolist (MH) Low Cost Monopolist (ML)

Monopolist
Action

Entrant Response Monopolist
Action

Entrant Response

IN OUT IN OUT

1 150 426 1 250 542

2 168 444 2 276 568

3 150 426 3 330 606

4 132 408 4 352 628

5 56 182 5 334 610

6 -188 -38 6 316 592

7 -292 -126 7 213 486

Table 1b:
Entrant Payoffs, High Cost Entrants

Entrant’s
Strategy

Monopolist’s Type

High Cost Low Cost

IN 300 74

OUT 250 250

Table 1c:
Entrant Payoffs, Low Cost Entrants

Entrant’s
Strategy

Monopolist’s Type

High Cost Low Cost

IN 500 200

OUT 250 250



Table 2
MLE Results for Learning Models

Standard Errors Corrected for Clustering

Model 1 Model 2 Model 3

Properties of the Model

Non-Learners U U U

Unsophisticated Learners U U

Sophisticated Learners U

Switching Between Types U

Number of Parameters 9 14 20

Parameter Estimates

Precision (λ)
(Multiplied by 100)

1.534**

(.166)
1.960**

(.111)
2.384**

(.117)

Probability 
Change of Strategy (pchange)

.503**

(.023)
.645**

(.029)
.674**

(.026)

Discounting of 
Past Experience (δ)

.084**

(.009)
.060**

(.010)

Square Root of Weight on Initial Beliefs 
Following Crossover (ρ)

.054+

(.028)
.022

(.036)

Weight on Others' Experience (wOther)
(Multiplied by 100) 

.259
(.162)

.699
(.454)

Probability 
Non-Learner

.310**

(.053)
.254**

(.046)

Probability
Sophisticated Learner

.188**

(.044)

Probability Switching Type
Non-Learner to Unsophisticated

.073
(.072)

Probability Switching Type
Unsophisticated to Sophisticated

.136**

(.045)

Log Likelihood -4517.11 -4215.31 -4120.60

Notes: The full data set has 4595 observations over 104 individuals, including 2585 observations from 66
individuals in the control sessions and 2010 observations from 38 individuals in the crossover sessions.

** statistically significant at the 1% level *statistically significant at the 5% level
+ statistically significant at the 10% level
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Appendix: This appendix shows that Conclusion 2 is supported by formal econometric analysis of the
data controlling for covariates affecting behavior. 

The regressions reported in this appendix are ordered probits.  The use of an ordered probit
specification recognizes that the output choices by Ms are inherently categorical data.  There are two
reasons for this.  First, suppose that the subjects have preferences over a continuum of possible output
choices.  Because the design only allows them seven possible choices, individuals whose true preferences
differ may end up in the same category.  For example, suppose that one subject most preferred output
level is 4.8 and another’s is 5.2.  These may both show up in the data as a choice of output level 5.  The
use of an ordered probit explicitly accounts for the mapping between a discreet choice set and an
underlying continuous space of possible choices.  Second, the game itself is fundamentally non-linear. 
For example, consider the difference as an ML between moving from output level 5 to 6 and moving from
6 to 7.  Beyond any strategic considerations, just considering the payoffs, the later is a much larger
change than the former.  The non-linearity of an ordered probit captures the idea that not all changes of a
single output level are equal.

The dependent variable in all of the regressions is the output level chosen by MLs.  To correct for
individual effects in the data, standard errors are calculated using Moulton’s (1986) correction for
clustering.  In addition to the ordered probits reported here, we have run a variety of other specifications
including linear models with a random effects specification, probits with a random effects specification,
and ordered probits with a limited number of categories and a random effects specification.  Our
qualitative conclusions are the same for any of these alternative approaches to the data.

Table A.1 reports the regression results.  The data set for these regressions includes all data from
games with low cost Es for subjects who returned for an experienced subject session.  Data from games
with high cost Es (data prior to the crossover) are not included.

[Insert Table A.1 here]

Formally, the full specification for the latent variable underlying the ordered probit is given by
equation A.1 below.  The variable Lo is a dummy for subjects who play the low cost entrant game in all
periods.  This is the control group.  The variable Hi is a dummy for subjects that play the high cost entrant
game initially and then are crossed over to the low cost entrant game.  In other words, this is a dummy for
the crossover treatment.  The variables CycI2 and CycI3 are dummies for the second and third twelve
period cycles of the inexperienced sessions.  The variables CycE1, CycE2, CycE3, and CycE4 are dummies
for the first, second, third, and fourth twelve period cycles of the experienced sessions.  Note that the time
dummies do not have an overlapping structure in this specification – we are measuring levels, not
differences.  The variables CycCR1, CycCR2, and CycCR3 are dummies for the first, second, and third twelve
period cycles following the crossover from the high cost entrant game to the low cost entrant game.  Thus,
for subjects in the crossover treatment we control for time since the subject started playing the low cost
entrant game, not total time the subject has been playing some limit pricing game.  The variable ER is a
vector of entry rate controls and the variable Con is a vector of controls for the use of meaningful context. 
The variables SMH and SML measure a subject’s use of strategic play as an MH and as an ML prior to
the crossover.  The variable TCRS measures how experienced the subject was when the crossover took
place.  The variables SMH, SML, and TCRS are all set equal to zero for subjects in the control sessions. 
The error term is given by εt

i.

i
t 1 I2 2 I3 3 E1 4 E2 5 E3 6 E4

i
1 CR1 2 CR 2 3 CR3 1 2 t

O Lo *Cyc Lo *Cyc Lo *Cyc Lo *Cyc Lo *Cyc Lo *Cyc

Hi *Cyc Hi *Cyc Hi *Cyc ER Con SMH SML TCRS IMT

= α +β +β +β +β +β +β

+δ + δ + δ + γ + η + λ + λ + τ + ι + ε

(Equation A.1)



30Identical regressions have been run using a variety of alternative entry rate controls, including ones that reflect
behavior in all preceding periods rather than just the current twelve period cycle.  The results of these alternative
regressions are similar to what is reported here.
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Less formally, the  independent variables fall into four categories as follows:
1. Controls for the Time Period Interacted with Treatment Dummy: The base in this specification is
the first twelve period cycle of the inexperienced sessions for subjects in the control sessions. The
regressions include the following dummies: inexperienced control sessions, periods 13 - 24;
inexperienced control sessions, periods 25 - 36; experienced control sessions, periods 1 - 12; experienced
control sessions, periods 13 - 24; experienced control sessions, periods 25 - 36; experienced control
sessions, periods 37 - 48; crossover sessions, periods 1 - 12 following the crossover; crossover sessions,
periods 13 - 24 following the crossover; and crossover sessions, periods 25 - 36 following the crossover. 
Parameter estimates for the inexperienced sessions are suppressed in Table A.1 since they are not of any
direct interest.
2. Controls for Es’ Behavior: The entry rates for the current twelve period cycle following outputs
2, 3, 4, 5, and 6 are included as independent variables.  These entry rates are calculated over all periods in
the current twelve period cycle and are calculated separately for each session.  To the extent that subjects’
beliefs reflect the experience that they are receiving, these five variables serve as a proxy for the
unobservable beliefs.  Note that the measures of entry rates only use information from the current twelve
period cycle, not from previous cycles.  This is done for two reasons.  First, based on the fitted parameters
for the learning model, there is good reason to expect that subjects’ beliefs will disproportionately reflect
experience from recent periods.  Second, and perhaps more importantly, our central interest is in how
behavior changes following the crossover.  We want to know if the change in Ms’ behavior following the
crossover is reflecting a change in Es’ behavior.  We therefore need a measure of Es’ behavior that
emphasizes how entry rates have changed following the crossover rather than reflecting entry rates prior
to the crossover.  Using only the current cycle allows our measures to strongly and rapidly reflect any
changes in Es’ behavior following the crossover.30  As a group, the entry rate controls are always easily
significant at the 1% level. These parameter estimates are suppressed in Table A.1 since they are not
directly relevant.  The second line of the table indicates whether these variables have been included in a
model.
3. Controls for Meaningful Context:  These include a dummy for subjects who experienced
meaningful context as well as interactions between the context dummy and the time dummies.  The
parameter estimates for these variables are not reported in Table A.1, but the second line of the table
shows whether these variables were included in a model.
4. Miscellaneous: Model 4 includes four miscellaneous independent variables.  One issue is whether
strategic play prior to the crossover is a good predictor for strategic play following the crossover.  We
therefore calculate two measures of strategic play prior to the crossover: the number of times a subject
played strategically the last ten times as an MH prior to the crossover and the number of times a subject
played strategically the last ten times as an ML prior to the crossover.  Both of these variables are
demeaned.  Another natural question is whether the timing of the crossover matters.  To control for when
the crossover occurs, Model 4 includes a variable that measures how many twelve period cycles of
experience a subject had before being crossed over.  Since no subject was crossed over without at least
four cycles of prior experience, we subtract four from this variable to give it a minimum value of zero. 
Finally, having directly observed strategic play by others might serve as a catalyst for an ML playing
strategically himself.  We therefore include a dummy for whether an ML in the crossover treatment was,
as an E prior to the crossover, paired with an ML who played strategically.  This variable is demeaned.

Turning to the results, Model 1 looks for a crossover effect without controlling for entry rates or



31The parameter estimates are 1.022 and 1.012 respectively with standard errors of .239 and .229.

32The parameter estimates are -.043 and -.046 respectively with standard errors of .263 and .224.

33We have run Model 4 with controls for entry rates and the use of meaningful context.  While the resulting
specification is messier, it yields qualitatively identical results to the specification shown here.  We have also used
different variables to measure previous experience as an E paired with a strategic ML and get qualitatively similar
results.
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context.  The variable of primary interest here is “Crossover: Periods 1 - 12 After Crossover.” (δ1 in
equation A.2) This parameter captures the difference between inexperienced subjects in the first twelve
period cycle of the control sessions and subjects in the first twelve period cycle following a crossover. 
The estimate is positive and significant at the 1% level.  Both of the other crossover dummies are also
statistically significant at the 1% level, with the size of the parameter estimates increasing substantially
over time.  If we modify the specification so the other two crossover dummies (“Crossover: Periods 13 -
24 After Crossover” and “Crossover: Periods 25 - 36 After Crossover” ) capture differences between the
second and third cycles following the crossover and the second and third cycles of the inexperienced
control sessions, the two crossover dummies remain significant at the 1% level.31  Thus, the regression
analysis confirms that there is significantly more strategic play by MLs following the crossover than in
inexperienced control sessions, both in the first twelve period cycle and throughout the session.

We can change the specification of Model 1 so that the parameter estimate for “Crossover:
Periods 1 - 12 After Crossover” captures the difference between play in the first twelve period cycle
following the crossover and first twelve period cycle of the experienced control sessions. Likewise, we
can also modify the specification so the other two crossover dummies capture differences between the
second and third cycles following the crossover and the second and third cycles of the experienced
control sessions.  With this specification, the parameter estimate for “Crossover: Periods 1 - 12 After
Crossover” becomes -.028 with a standard error of .180.  This is not significantly different form zero.   
Further, no significant differences can be found between experienced control sessions and crossover
sessions in later cycles either as the dummies for “Crossover: Periods 13 - 24 After Crossover” and
“Crossover: Periods 25 - 36 After Crossover” both fail to achieve significance individually32 and the three
crossover dummies fail to be jointly significant (χ2 = 0.29, 3 d.f., p > .10).  Thus, there are no significant
differences in strategic play between the crossover sessions and the experienced control sessions. 

Model 2 adds the controls for Es’ behavior to Model 1, and Model 3 adds the controls for context
to Model 2.  These additional controls are statistically significant at the 1% level (χ2 = 70.08, 12 d.f., p <
.01), but have no effect on our conclusions from Model 1.

Model 4 adds the two controls for strategic behavior prior to the crossover to Model 1, the control
for when the crossover took place, and the control for, as an E, having been paired with an ML who
played strategically prior to the crossover.33  While neither the timing of the crossover (τ in equation A.2)
nor direct experience with an ML playing strategically (ι in equation A.2) have a statistically significant
effect, the parameter estimates for both of the variables measuring strategic behavior prior to the
crossover (λ1 and λ2 in equation A.2) are positive and statistically significant at the 1% level. 
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Table A.1

Crossover Effects for MLs:  Ordered Probits, 
Standard Errors Corrected for Clustering, Dependent Variable is Output Level

Model 1 Model 2 Model 3 Model 4

Control Variables None Entry Rates Entry Rates
Context None

Number of Parameters 15 20 27 19

(β3) No Crossover, Experienced
Periods 1 - 12

.613**

(.151)
.750**

(.213)
.395+

(.226)
.640**

(.158)

(β4) No Crossover, Experienced
Periods 13 - 24

1.095**

(.155)
1.268**

(.198)
.902**

(.197)
1.145**

(.163)

(β5) No Crossover, Experienced
Periods 25 - 36

1.323**

(.161)
1.418**

(.176)
1.053**

(.201)
1.384**

(.170)

(β6) No Crossover, Experienced
Periods 37 - 48

1.534**

(.191)
1.560**

(.213)
1.291**

(.289)
1.604**

(.204)

(δ1) Crossover
Periods 1 - 12 After Crossover

.585**

(.151)
.592**

(.167)
.436*

(.175)
.529**

(.194)

(δ2) Crossover
Periods 13 - 24 After Crossover

1.052**

(.240)
1.055**

(.241)
.915**

(.253)
1.010**

(.200)

(δ3) Crossover
Periods 25 - 36 After Crossover

1.277**

(.206)
1.355**

(.212)
1.238**

(.222)
1.380**

(.256)

(λ1) Strategic Play as MH
10 Plays Prior to Crossover

.123**

(.025)

(λ2) Strategic Play as ML
10 Plays Prior to Crossover

.235**

(.056)

(τ) Cycle When
Crossover Occurs

.022
(.089)

(ι) Paired with an ML 
Who Played Strategically

.238
(.193)

Log Likelihood -1999.67 -1993.31 -1964.63 -1929.74

Notes: All regressions contain 1654 observations over 104 individuals. 

** statistically significant at the 1% level
* statistically significant at the 5% level 
+ statistically significant at the 10% level



Figure 1
Control vs. Crossover Sessions
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Figure 2

Experiment 2
MLs in the Control Group vs. MLs in the Crossover Sessions
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Figure 3

Strategic Play by MLs, Simulations of Learning without Sophisticated Learners
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Strategic Play by MLs, Simulations of Learning with Sophisticated Learners
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Strategic Play by MLs, Data from Experiment 2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Play 1 Play 2 Play 3 Play 4 Play 5 Play 6 Play 7 Play 8 Play 9

Pe
rc

en
ta

ge
 S

tra
te

gi
c 

Pl
ay

Inexperienced Control Experienced Control After Crossover from EH game


